Custom Search

Saturday, July 19, 2008

An Overview of Cryptography

1. INTRODUCTION

Does increased security provide comfort to paranoid people? Or does security provide some very basic protections that we are naive to believe that we don't need? During this time when the Internet provides essential communication between tens of millions of people and is being increasingly used as a tool for commerce, security becomes a tremendously important issue to deal with.

There are many aspects to security and many applications, ranging from secure commerce and payments to private communications and protecting passwords. One essential aspect for secure communications is that of cryptography, which is the focus of this chapter. But it is important to note that while cryptography is necessary for secure communications, it is not by itself sufficient. The reader is advised, then, that the topics covered in this chapter only describe the first of many steps necessary for better security in any number of situations.

This paper has two major purposes. The first is to define some of the terms and concepts behind basic cryptographic methods, and to offer a way to compare the myriad cryptographic schemes in use today. The second is to provide some real examples of cryptography in use today.

I would like to say at the outset that this paper is very focused on terms, concepts, and schemes in current use and is not a treatise of the whole field. No mention is made here about pre-computerized crypto schemes, the difference between a substitution and transposition cipher, cryptanalysis, or other history. Interested readers should check out some of the books in the bibliography below for this detailed — and interesting! — background information.

2. THE PURPOSE OF CRYPTOGRAPHY

Cryptography is the science of writing in secret code and is an ancient art; the first documented use of cryptography in writing dates back to circa 1900 B.C. when an Egyptian scribe used non-standard hieroglyphs in an inscription. Some experts argue that cryptography appeared spontaneously sometime after writing was invented, with applications ranging from diplomatic missives to war-time battle plans. It is no surprise, then, that new forms of cryptography came soon after the widespread development of computer communications. In data and telecommunications, cryptography is necessary when communicating over any untrusted medium, which includes just about any network, particularly the Internet.

Within the context of any application-to-application communication, there are some specific security requirements, including:

  • Authentication: The process of proving one's identity. (The primary forms of host-to-host authentication on the Internet today are name-based or address-based, both of which are notoriously weak.)
  • Privacy/confidentiality: Ensuring that no one can read the message except the intended receiver.
  • Integrity: Assuring the receiver that the received message has not been altered in any way from the original.
  • Non-repudiation: A mechanism to prove that the sender really sent this message.

Cryptography, then, not only protects data from theft or alteration, but can also be used for user authentication. There are, in general, three types of cryptographic schemes typically used to accomplish these goals: secret key (or symmetric) cryptography, public-key (or asymmetric) cryptography, and hash functions, each of which is described below. In all cases, the initial unencrypted data is referred to as plaintext. It is encrypted into ciphertext, which will in turn (usually) be decrypted into usable plaintext.

In many of the descriptions below, two communicating parties will be referred to as Alice and Bob; this is the common nomenclature in the crypto field and literature to make it easier to identify the communicating parties. If there is a third or fourth party to the communication, they will be referred to as Carol and Dave. Mallory is a malicious party, Eve is an eavesdropper, and Trent is a trusted third party.

3. TYPES OF CRYPTOGRAPHIC ALGORITHMS

There are several ways of classifying cryptographic algorithms. For purposes of this paper, they will be categorized based on the number of keys that are employed for encryption and decryption, and further defined by their application and use. The three types of algorithms that will be discussed are (Figure 1):

  • Secret Key Cryptography (SKC): Uses a single key for both encryption and decryption
  • Public Key Cryptography (PKC): Uses one key for encryption and another for decryption
  • Hash Functions: Uses a mathematical transformation to irreversibly "encrypt" information

3.1. Secret Key Cryptography

With secret key cryptography, a single key is used for both encryption and decryption. As shown in Figure 1A, the sender uses the key (or some set of rules) to encrypt the plaintext and sends the ciphertext to the receiver. The receiver applies the same key (or ruleset) to decrypt the message and recover the plaintext. Because a single key is used for both functions, secret key cryptography is also called symmetric encryption.

With this form of cryptography, it is obvious that the key must be known to both the sender and the receiver; that, in fact, is the secret. The biggest difficulty with this approach, of course, is the distribution of the key.

Secret key cryptography schemes are generally categorized as being either stream ciphers or block ciphers. Stream ciphers operate on a single bit (byte or computer word) at a time and implement some form of feedback mechanism so that the key is constantly changing. A block cipher is so-called because the scheme encrypts one block of data at a time using the same key on each block. In general, the same plaintext block will always encrypt to the same ciphertext when using the same key in a block cipher whereas the same plaintext will encrypt to different ciphertext in a stream cipher.

Stream ciphers come in several flavors but two are worth mentioning here. Self-synchronizing stream ciphers calculate each bit in the keystream as a function of the previous n bits in the keystream. It is termed "self-synchronizing" because the decryption process can stay synchronized with the encryption process merely by knowing how far into the n-bit keystream it is. One problem is error propagation; a garbled bit in transmission will result in n garbled bits at the receiving side. Synchronous stream ciphers generate the keystream in a fashion independent of the message stream but by using the same keystream generation function at sender and receiver. While stream ciphers do not propagate transmission errors, they are, by their nature, periodic so that the keystream will eventually repeat.

Block ciphers can operate in one of several modes; the following four are the most important:

  • Electronic Codebook (ECB) mode is the simplest, most obvious application: the secret key is used to encrypt the plaintext block to form a ciphertext block. Two identical plaintext blocks, then, will always generate the same ciphertext block. Although this is the most common mode of block ciphers, it is susceptible to a variety of brute-force attacks.
  • Cipher Block Chaining (CBC) mode adds a feedback mechanism to the encryption scheme. In CBC, the plaintext is exclusively-ORed (XORed) with the previous ciphertext block prior to encryption. In this mode, two identical blocks of plaintext never encrypt to the same ciphertext.
  • Cipher Feedback (CFB) mode is a block cipher implementation as a self-synchronizing stream cipher. CFB mode allows data to be encrypted in units smaller than the block size, which might be useful in some applications such as encrypting interactive terminal input. If we were using 1-byte CFB mode, for example, each incoming character is placed into a shift register the same size as the block, encrypted, and the block transmitted. At the receiving side, the ciphertext is decrypted and the extra bits in the block (i.e., everything above and beyond the one byte) are discarded.
  • Output Feedback (OFB) mode is a block cipher implementation conceptually similar to a synchronous stream cipher. OFB prevents the same plaintext block from generating the same ciphertext block by using an internal feedback mechanism that is independent of both the plaintext and ciphertext bitstreams.

A nice overview of these different modes can be found at progressive-coding.com.

3.2. Public-Key Cryptography

Public-key cryptography has been said to be the most significant new development in cryptography in the last 300-400 years. Modern PKC was first described publicly by Stanford University professor Martin Hellman and graduate student Whitfield Diffie in 1976. Their paper described a two-key crypto system in which two parties could engage in a secure communication over a non-secure communications channel without having to share a secret key.

PKC depends upon the existence of so-called one-way functions, or mathematical functions that are easy to computer whereas their inverse function is relatively difficult to compute. Let me give you two simple examples:

  1. Multiplication vs. factorization: Suppose I tell you that I have two numbers, 9 and 16, and that I want to calculate the product; it should take almost no time to calculate the product, 144. Suppose instead that I tell you that I have a number, 144, and I need you tell me which pair of integers I multiplied together to obtain that number. You will eventually come up with the solution but whereas calculating the product took milliseconds, factoring will take longer because you first need to find the 8 pair of integer factors and then determine which one is the correct pair.
  2. Exponentiation vs. logarithms: Suppose I tell you that I want to take the number 3 to the 6th power; again, it is easy to calculate 36=729. But if I tell you that I have the number 729 and want you to tell me the two integers that I used, x and y so that logx 729 = y, it will take you longer to find all possible solutions and select the pair that I used.

While the examples above are trivial, they do represent two of the functional pairs that are used with PKC; namely, the ease of multiplication and exponentiation versus the relative difficulty of factoring and calculating logarithms, respectively. The mathematical "trick" in PKC is to find a trap door in the one-way function so that the inverse calculation becomes easy given knowledge of some item of information.

Generic PKC employs two keys that are mathematically related although knowledge of one key does not allow someone to easily determine the other key. One key is used to encrypt the plaintext and the other key is used to decrypt the ciphertext. The important point here is that it does not matter which key is applied first, but that both keys are required for the process to work (Figure 1B). Because a pair of keys are required, this approach is also called asymmetric cryptography.

In PKC, one of the keys is designated the public key and may be advertised as widely as the owner wants. The other key is designated the private key and is never revealed to another party. It is straight forward to send messages under this scheme. Suppose Alice wants to send Bob a message. Alice encrypts some information using Bob's public key; Bob decrypts the ciphertext using his private key. This method could be also used to prove who sent a message; Alice, for example, could encrypt some plaintext with her private key; when Bob decrypts using Alice's public key, he knows that Alice sent the message and Alice cannot deny having sent the message (non-repudiation).

3.3. Hash Functions

Hash functions, also called message digests and one-way encryption, are algorithms that, in some sense, use no key (Figure 1C). Instead, a fixed-length hash value is computed based upon the plaintext that makes it impossible for either the contents or length of the plaintext to be recovered. Hash algorithms are typically used to provide a digital fingerprint of a file's contents, often used to ensure that the file has not been altered by an intruder or virus. Hash functions are also commonly employed by many operating systems to encrypt passwords. Hash functions, then, provide a measure of the integrity of a file.

3.4. Why Three Encryption Techniques?

So, why are there so many different types of cryptographic schemes? Why can't we do everything we need with just one?

The answer is that each scheme is optimized for some specific application(s). Hash functions, for example, are well-suited for ensuring data integrity because any change made to the contents of a message will result in the receiver calculating a different hash value than the one placed in the transmission by the sender. Since it is highly unlikely that two different messages will yield the same hash value, data integrity is ensured to a high degree of confidence.

Secret key cryptography, on the other hand, is ideally suited to encrypting messages. The sender can generate a session key on a per-message basis to encrypt the message; the receiver, of course, needs the same session key to decrypt the message.

Key exchange, of course, is a key application of public-key cryptography (no pun intended). Asymmetric schemes can also be used for non-repudiation; if the receiver can obtain the session key encrypted with the sender's private key, then only this sender could have sent the message. Public-key cryptography could, theoretically, also be used to encrypt messages although this is rarely done because secret-key cryptography operates about 1000 times faster than public-key cryptography.



Figure 2 puts all of this together and shows how a hybrid cryptographic scheme combines all of these functions to form a secure transmission comprising digital signature and digital envelope. In this example, the sender of the message is Alice and the receiver is Bob.

A digital envelope comprises an encrypted message and an encrypted session key. Alice uses secret key cryptography to encrypt her message using the session key, which she generates at random with each session. Alice then encrypts the session key using Bob's public key. The encrypted message and encrypted session key together form the digital envelope. Upon receipt, Bob recovers the session secret key using his private key and then decrypts the encrypted message.

The digital signature is formed in two steps. First, Alice computes the hash value of her message; next, she encrypts the hash value with her private key. Upon receipt of the digital signature, Bob recovers the hash value calculated by Alice by decrypting the digital signature with Alice's public key. Bob can then apply the hash function to Alice's original message, which he has already decrypted (see previous paragraph). If the resultant hash value is not the same as the value supplied by Alice, then Bob knows that the message has been altered; if the hash values are the same, Bob should believe that the message he received is identical to the one that Alice sent.

This scheme also provides nonrepudiation since it proves that Alice sent the message; if the hash value recovered by Bob using Alice's public key proves that the message has not been altered, then only Alice could have created the digital signature. Bob also has proof that he is the intended receiver; if he can correctly decrypt the message, then he must have correctly decrypted the session key meaning that his is the correct private key.


To learn more read www.garykessler.net/library/crypto.html.

Because that is the place where I get information.

No comments: